OF MICROBIAL INACTIVATION THROUGH FECES TREATMENT USING ASH

- H. Harada^{1*}, Y. Kimoto², S. Fujii¹
- 1 Graduate School of Global Environmental Studies, Kyoto Univ.
- 2 Graduate School of Engineering, Kyoto Univ.

INTRODUCTION: DRY TOILET AND HEALTH

- In developing contexts
 - Feces in the dry toilet often treated by ash with a proper retention period.
 - Treated feces used for agriculture

However,

Whereas dry toilets are used practically, the recycling of human excreta for agriculture poses a certain level of health risk [Peasey, 2000; Schönning et al., 2007].

AN EXAMPLE IN ACTUAL MANAGEMENT OF DRY TOILET USING ASH

In Vietnam, double-chamber type dry Variety in inactivation toilets were introduced in 1965 [Winblad, Quality and quantity of and Simpson-Hebert, 2004]. locally available ash Timing for using fecal **Human** body matter as fertilizer Feces Timing to use ash ■ Local climatic conditions Fecal such as temperature chamber and humidity Ash ■ Fecal chambers Bag with/without ventilation Agriculture and solar heater etc. Fire source Husk ← Agri residue ← Harvesting

Fig. An example of feces and urine management flow in rural Hanoi

CONCERNS ON INACTIVATION OF PATHOGENS IN DRY TOILETS

What is required for proper sanitization of excreta?

Knowledge on inactivation of pathogens in a dry toilet by ash

- Case study of required retention period of feces with ash
 - Six months at a tropical coastal community [Chien et al., 2001]
 - Ten months at a sub-tropical hilly community [Harada et al., 2004].
- Qualitative and partly quantitative study of effect on inactivation by pH, humidity, temperature and balking agent type [Schönning and Stenström, 2004; Austin and Cloete, 2008]
- Inactivation rate coefficient of indicator bacteria in dry toilets at some specific operating conditions [Niwagaba, 2009]

OBJECTIVES

- ? Quantitative effects of potentially influential factors on kinetics of the pathogen inactivation process in dry toilet by ash?
 - Essential to design a fecal treatment procedure for proper pathogen inactivation of feces at a given condition

Ash quality? Ash quantity? Water contents/humidity? Temperature? Iron solar heater? Ventilation? Retention time? etc.

Objectives

■ To experimentally study the quantitative effects of influential factors on inactivation kinetics of pathogens in dry toilet using ash

MATERIALS AND METHODS

EXPERIMENTAL SET UP

Mixing with additives

Add water or drying

Retention

Sampling and measurement

Calculation of inactivation ratio

300 g of swine excreta

17 sealed reactors at various pH and water content

At 4, 20, 36 °C

pH, water content, indicator bacteria (IB) count

 $\log_{10} (N/N_0) = \log_{10} \left\{ \frac{\text{IB count at Day } n \text{ (cfu/g-dry)}}{\text{IB count at Day 0 (cfu/g-dry)}} \right\}$

Additives

(pH, water content)

Black dart soil (7.2, 33.7%)

Commercial plant ash for gardening (10.6, 16.3%)

Maple wood ash (12.1, 0.95%)

Oak wood ash (12.5, 0.93%)

PH & BACTERIA MEASUREMENT

RESULTS AND DISCUSSION

INACTIVATION UNDER DIFFERENT AMOUNT OF ASH

Fig. Time transition of inactivation ratio with three different amount of plant ash at 20 C°

CB, FC, E.Coli; gram negative; FS: gram positive

EFFECT OF PH

- Stable pH after several days
- Assuming first-order inactivation
 - -> Calculating k with each reactor

$$\log\left(\frac{N}{N_0}\right) = -k \times t$$

Fig. log k according to stable pH for 11 reactors at 20 °C

EFFECT OF WATER CONTENT

Fig. log k according to water content for each of 7 reactors at 20 °C. pH was fixed at 8.0-9.0.

EFFECTS OF TEMPERATURE

Fig. 3

tempe

water

and 54

van't Hoff-Arrehenius
relationship

$$\ln \frac{k_2}{k_1} = \frac{E(T_2 - T_1)}{RT_1T_2} = \frac{E}{RT_1T_2}(T_2 - T_1)$$

Since the range of T_1 - T_2 is small,

$$\iff \frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$

$$\langle \Rightarrow \log k = \log \theta \times T + C_0$$

- \square Sensitivities on k by temp. was more for CB than FS.
- ☐ If 10 °C increases, inactivation rates increase by 1.8 times for CB, and by 1.3 times for FS.

ESTIMATION OF K AND ITS VALIDATION

AN EXAMPLE OF EVALUATING FECAL MANAGEMENT

Target of treated concentration: 10³/g-dry solid (US-EPA)

Initial concentration: 1.3×10^7 (cfu/gDS) for CB; 3.0×10^6 for FS (cfu/gDS)

pH (-)	8.6		10.5		10.5	
Temp. (°C)	23.6		25		15	
Item	СВ	FS	СВ	FS	СВ	FS
k (1/day)	0.16	0.03	2.05	0.38	1.16	0.28
T ₉₀ (day)	6.1	31.5	0.5	2.6	0.9	3.6
Required time for the target (day)	26	110	2.1	9.1	3.6	12.6

Bacteria infection control according to local contexts

CONCLUSIONS

- Dry fecal treatment processes using ash under various retention conditions.
 - Inactivation modeled based on a first-order reaction and van't Hoff-Arrehenius relationship.
 - Inactivation rate on CB faster than FS; pH affects similar; temp affect more on CB
 - When +3 pH, increasing by 100 times for CB and FS.
 - When +10 C°, increasing by 1.8 & 1.3 times for CB & FS, respectively.
- Challenges:
 - Effect of water content on inactivation process
 - Inactivation process of viruses and parasites
 - Scheme to determine the inactivation conditions for achieving a certain level of health

Acknowledgement:

Kyoto University Global COE "Global Center of Education and Research on Human Security Engineering for Asian Megacities", and Young Researchers Fund, GSGES, Kyoto Univ.

